Recognition of any Character by using SOM Technique

Purnendu Mishra
Dept. of ECE, Vikash College of Engineering for Women, Bargarh, Odisha, INDIA.

Corresponding Author’s Email: purnendumish@gmail.com

ARTICLE INFO

Article history:
Received 10 Sept. 2012
Accepted 28 Sept. 2012
Available online 01 October 2012

Keywords:
Artificial Neural Networks
Self-organizing map
Image digitization
Kohonen learning algorithm,
Character Recognition

ABSTRACT

Artificial Neural Networks (ANNs) serve for the emulation of human thinking in computation to a meager, yet appreciable extent. Of the several fields wherein they have been applied, humanoid computing in general and pattern recognition in particular of increasing activity. The recognition of visual (optical) characters is a problem of relatively amenable complexity when compared with greater challenges such as recognition of human faces. ANNs have enjoyed considerable success in this area due to their humanoid qualities such as adapting to changes and learning from prior experience.

Introduction

Self-Organizing Map:
In a self-organizing map, the neurons are placed at the nodes of a lattice that is usually one or two-dimensional. Higher dimensional maps are also possible but not as common. The neurons become selectively tuned to various input patterns (stimuli) or classes of input patterns in the course of learning process. The locations of neurons so tuned (i.e., the winning neurons) become ordered with respect to each other in such a way that a meaningful coordinate system for different input features is created over the lattice. A self-organizing map is therefore characterized by the formation of a topographic map of the input patterns in which the spatial locations(i.e., coordinates) of the neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns, hence the name “self-organizing map”.

The principal goal of Self organizing Map (SOM) is to transform an incoming signal pattern of arbitrary dimension into one or two dimensional discrete map and to perform this transformation adaptively in a topological ordered fashion. Figure 1 shows the schematic diagram of a two dimensional lattice neuron commonly used as the discrete map. Once the network has been properly initialized, there are three essential processes involved in the information of the self-organizing map i.e. Competition, Cooperative Process, Synaptic Adaptive Process.

Image Digitization:

When a document is put to a visual reorganization, it is expected to be consisting of printed (or hand written) characters pertaining to one or more scripts or fonts. This document however, many contain information besides optical characters alone. In addition, characters which need to be singly analyzed may exist as word clusters or may be located at various points in the document. Such an image is usually processed for noise reduction and separation of individual characters from the document. . The process of digitization is important for the neural network used in the system. In this process, the input image is sampled in to a binary window which forms the input to the reorganization system. In the above figure, the alphabet T has been digitized into let, AxB=C digital cells, each having a single color, either black or white. It becomes important for us to encode this information in a form meaning full to a computer.
For this, we assign a value +1 to each black pixel and 0 to each white pixel and create the binary image matrix \(I \) which is shown in the figure. So much conversion is enough for neural networking which is described next. Digitization of an image into a binary matrix of specified dimensions makes the input image invariant of its actual dimensions. Hence an image of whatever size gets transformed into a binary matrix of fixed predetermined dimensions. This establishes uniformity in the dimensions of the input and stored patterns as they move through the reorganization system.

Fig: 2. Image digitization

The essence of Kohonen’s SOM algorithm is that it substitutes a simple geometric computation for the more detailed properties of the Hebb-like rule and lateral interactions.

Methodology
Kohonen Learning Algorithm: There are three basic steps involved in the application of the algorithm after initialization: sampling, similarity matching, and updating. These three steps are repeated until formation of the feature map has completed. The algorithm is summarized as follows:

1. Initialization: Choose the random values for initial weight vectors \(w_j(0) \). The only restriction here is that the \(W_j(0) \) be different for \(j=1,2,3\ldots,1 \), where \(I \) is the number of neurons in the lattice. It may be described to keep the magnitude of the weights small.

Another way of initializing the algorithm is to select the weight vector

\[
\{ w_j(0)=1 \}
\]

from the available sets of input vectors \(\{ x_j \} \) in a random manner.

2. Sampling: Draw a simple \(x \) from the input space with a certain probability; the vector \(x \) represents the activation pattern that is applied to the lattice. The dimensions of the vector \(x \) is equal to \(m \).

3. Similarity Matching: Find the best matching (winning) neuron \(i(x) \) at a time step \(n \) by using minimum distance Euclidean criterion:

\[
i(x)=\text{arg min } j \|x(n)-w_j(n)\|
\]

4. Updating: Adjust the synaptic weight vectors of all neurons by using the update formula

\[
w_j(n+1)=w_j(n)+\eta(n)h_{j,i(x)}(n)(x(n)-w_j(n))
\]

Where \(\eta(n) \) is the Learning rate parameter, and \(h_{j,i(x)}(n) \) is the Neighborhood function centered around the winning neuron \(i(x) \); both \(\eta(n) \) and \(h_{j,i(x)}(n) \) varied dynamically during learning for best results.

5. Continuation: Continue with step 2 until no noticeable changes in the feature map are observed.

Initially the binary codes for all the alphabets (both cases), decimal numbers and some special characters are submitted. The input pattern is to be collected by \(X \) \((1\times63)\). The weight matrix \(W \) \((63\times63)\) is to be initialized. The initial learning rate is defined and the algorithm is applied. The different steps required in coding are:

- The binary codes for all the alphabets are to be submitted.
- Chose the input pattern.
- Printing the input pattern.
- Start of Learning Process.
- Weight updating of the winning neuron
- Rounding of the weight vectors to the nearest integer value after the training.
- Printing the weight matrix of winning neuron.

The step by step procedure is represented in the form a flow chart as shown in Fig.3

Fig: 3. Flow chart of character recognition by SOM
Simulation Results:

- Fig: 4. Input Pattern
- Fig: 5. Initial Weight Matrix
- Fig: 6. Iteration of a Character
- Fig: 7. Final Output Pattern

Conclusion: Despite of computational complexity involved, ANN offers several advantages in pattern recognition and classification in the scene of emulating adaptive human intelligence to a small extent. Hence ANN for character recognition method is more effective as compared to the classical methods.

References: