Volume 4, Issue 7

Testing and Validation of Thermoelectric Coolers.


N.B.Totla*, Chetan V. Zamde, Varun P. Dhomane, Mayur R. Wagh, and Nikhil A. Mantode



The first Air conditioners and refrigerators employed toxic or flammable gases such as Chloro Fluoro Carbons (CFC’s), Hydro Chloro Fluorocarbons (HCFC’s), Hydro Fluoro Carbons (HFC’s) and ammonia that could result in fatal accidents when they leaked into the atmosphere. In an automobile, the AC system increases fuel consumption of the vehicle, which uses around 4HP (i.e. 3 kW) of the engine's power. Most refrigerants used for AC system contribute to global warming, and may also destroy the ozone layer. CFC’s, HCFC’s, and HFC’s are poisonous greenhouse gases when they are leaked to the atmosphere and 100 gm of HFC’s destroy 0.5 tons of O3 molecules. In recent years, demand for small size active cooling equipment has increased which includes TEC and water cooled heat sink. While on the other hand the passive cooling system includes heat sink and fan which is not effective enough to cope with task of cooling various electronic components. The active cooling system using TEC can be used where precise control of temperature is required. The energy conversion process which is carried out by active cooling system to absorb the heat from the surface to be cooled and reject that heat to the surrounding. Our project objective is testing and validation of TEC1-12706 and evaluating its capacity, limitations and performance to be used to produce cooling effect in R&AC system. Authors are presenting performance curve enabling the user to design the optimum number of thermoelectric module (TEM) for any required cooling system. In order to find out the capacity of single TEC we have made a prototype in which the existing refrigerants are replaced by newly emerging TEC which works on Peltier effect in AC system. TEC can be used as a generator to generate electricity by applying reverse engineering.



PAGES : 442-445 | 76 VIEWS | 41 DOWNLOADS

Download Full Article

N.B.Totla*, Chetan V. Zamde, Varun P. Dhomane, Mayur R. Wagh, and Nikhil A. Mantode | Testing and Validation of Thermoelectric Coolers. | DOI : https://doi.org/10.62226/ijarst20150757

Journal Frequency: ISSN 2320-1126, Monthly
Paper Submission: Throughout the month
Acceptance Notification: Within 6 days
Subject Areas: Engineering, Science & Technology
Publishing Model: Open Access
Publication Fee: USD 60  USD 50
Publication Impact Factor: 6.76
Certificate Delivery: Digital

Publish your research with IJARST and engage with global scientific minds