Kuramdasu Tatarao* and Bigneswar Panda
In deep submicron technologies, leakage power becomes a key for a low power design due to its ever increasing proportion in chip’s total power consumption. Power dissipation is an important consideration in the design of CMOS VLSI circuits. High power consumption leads to reduction in battery life in case of battery powered applications and affects reliability packaging and cooling costs. We propose a technique called LCPMOS for designing CMOS gates which significantly cuts down the leakage current without increasing the dynamic power dissipation. LCPMOS, a technique to tackle the leakage problem in CMOS circuits, uses single additional leakage control transistor, driven by the output from the pull up and pull down networks, which is placed in a path from pull down network to ground which provides the additional resistance thereby reducing the leakage current in the path from supply to ground. The main advantage as compared to other techniques is that LCPMOS technique does not require any additional control and monitoring circuitry, thereby limits the area and also decreases the power dissipation in active state. Along with this, the other advantage with LCPMOS technique is that it reduces the leakage power to an extent of 91.54%, which is more efficient in aspects of area and power dissipation compared to other leakage power reduction techniques.
https://doi.org/10.62226/ijarst20140331
PAGES : 180-184 | 38 VIEWS | 73 DOWNLOADS
Kuramdasu Tatarao* and Bigneswar Panda | LCPMOS : An Area Efficient Leakage Power Reduction In CMOS Circuits | DOI : https://doi.org/10.62226/ijarst20140331
Journal Frequency: | ISSN 2320-1126, Monthly | |
Paper Submission: | Throughout the month | |
Acceptance Notification: | Within 6 days | |
Subject Areas: | Engineering, Science & Technology | |
Publishing Model: | Open Access | |
Publication Fee: | USD 60 USD 50 | |
Publication Impact Factor: | 6.76 | |
Certificate Delivery: | Digital |